Kursplan

Kursplan: Matematik I med didaktisk inriktning

Kurskod: MD1099
Poäng: 30 högskolepoäng
Nivå: Grundnivå 1
Akademi: Akademin Utbildning, hälsa och samhälle
Ämnestillhörighet: Matematikdidaktik (MDI)
Ämnesgrupp: Utbildningsvetenskap teoretiska ämnen
Utbildningsområde: Naturvetenskapliga området, 100%
Fastställd:
Fastställd 2015-06-11.
Kursplanen gäller fr.o.m. 2015-06-11.

Förkunskapskrav: Visa information om behörighetskrav

Lärandemål

Kursens övergripande mål är att den studerande utvecklar och fördjupar sina matematiska förmågor och kunskaper samtidigt som de förbereder sig för en framtida yrkesprofession som matematiklärare. Ett särskilt mål är att den studerande tillägnar sig kunskap om matematikens logiska, axiomatiska uppbyggnad. Den studerande ska också kunna redogöra för olika vetenskapliga teorier och forskningsrön, såväl nationella som internationella, som behandlar utvecklande av matematiska kunskaper. Ett övergripande mål är också att de studerande utvecklar självständighet i studierna samt förmåga att reflektera över det egna lärandet.

Delkurser

1.
Matematikdidaktik I,  7,5 högskolepoäng

Efter avslutad delkurs ska den studerande kunna:

  • föra skriftliga didaktiska resonemang och förankra resonemangen i didaktiska begrepp och teorier,
  • använda analytiska begrepp för att urskilja och beskriva villkor och förutsättningar för matematikundervisning och lärande i matematik,
  • planera en undervisningssituation och motivera sina val utifrån didaktiska och matematiska begrepp och teorier samt aktuella styrdokument,
  • motivera sina ställningstaganden om undervisning och lärande i matematik utifrån grundläggande matematiska och didaktiska begrepp och teorier.

2.
Algebra,  7,5 högskolepoäng

Efter avslutad delkurs ska den studerande kunna:

  • visa kännedom om och använda matematikens grundläggande språk och uttrycksformer,
  • visa kunskap om olika talområden såsom de hela talen, rationella tal, reella tal och komplexa tal,
  • visa förståelse för nödvändigheten av att basera matematiken på logiska och axiomatiska system,
  • visa kunskap om definitioner och satser i talteori,
  • lösa algebraiska ekvationer och ekvationssystem,
  • bevisa grundläggande satser i talteori med olika bevismetoder såsom direkt och indirekt bevisföring, motsägelseteknik samt matematisk induktion,
  • visa kunskap i elementär kombinatorik och använda binomialsatsen för att undersöka och utveckla polynom,
  • utföra polynomdivision och använda några metoder för lösning av vissa typer av polynomekvationer.

3.
Geometri,  7,5 högskolepoäng

Efter avslutad delkurs ska den studerande kunna:

  • visa kännedom om definitioner och satser i plan, euklidisk geometri,
  • bevisa grundläggande satser i plan, euklidisk geometri,
  • lösa geometriska problem med användande av postulat, definitioner, och satser,
  • visa förståelse för matematikens logiska och axiomatiska natur,
  • lösa problem med räta linjer och cirklar i analytisk geometri,
  • hantera och värdera ett datorprogram i geometri,
  • visa kännedom om några definitioner och satser i icke-euklidisk geometri.

4.
Matematisk problemlösning i skolan,  7,5 högskolepoäng

Efter avslutad delkurs ska den studerande kunna:

  • redogöra för olika vetenskapliga teorier och forskningsrön såväl nationella som internationella, som behandlar matematisk problemlösning i skolan,
  • kommunicera matematik i tal, skrift, bild och handling,
  • använda olika matematiska idéer, uttrycksformer och representationsformer vid problemlösning,
  • visa förmåga att kreativt skapa, formulera och lösa problem som inte har en given lösning,
  • tolka och kritiskt granska elevlösningar samt visa förståelse för den matematiska progressionen i elevers lärande,
  • analysera undervisning i matematisk problemlösning på ett vetenskapligt sätt.

Innehåll

Kursen består av fyra delkurser och behandlar algebra, geometri, matematisk problemlösning i skolan och matematikdidaktik.

Delkurser

1.
Matematikdidaktik I,  7,5 högskolepoäng

Delkursen är en introduktion till matematikdidaktik som vetenskapsområde och undervisningspraktik. I delkursen behandlas grundläggande teorier om kunskap, lärande och undervisning i matematik. Tyngdpunkten ligger dels på de didaktiska grundbegreppen syfte, innehåll och metod, dels på teorier om begreppsbildning och resonemang inklusive förankring av argument. Dessutom tar kursen upp språk och kommunikation i matematik. Här innefattas semiotiska system, användandet av olika konkretiseringar och representationer som exempelvis grafer, tabeller och diagram, kommunikation i klassrummet och visualisering. Delkursen behandlar även teknikburna kunskapsprocesser inklusive digitala verktyg i matematikundervisningen. Fokus ligger på matematiska begrepp med tillhörande representationsformer som är relevanta för elever i åk 7-9 och gymnasiet.

2.
Algebra,  7,5 högskolepoäng

Delkursen behandlar matematikens språk och uttrycksformer och talteori med olika bevisprinciper. Vidare behandlas grundläggande kombinatorik, grunderna för komplexa tal och polynom med polynomdivision.

3.
Geometri,  7,5 högskolepoäng

Delkursen inleds med geometrins historia samt behandlar grundläggande begrepp och samband i trianglar och cirklar såsom kongruens, likformighet, Pythagoras sats och trigonometri i trianglar. Vidare behandlas postulat, definitioner och satser i euklidisk geometri samt i geometrisk problemlösning. En laboration med digitala verktyg genomförs. Avslutningsvis behandlas analytisk och icke-euklidisk geometri.

4.
Matematisk problemlösning i skolan,  7,5 högskolepoäng

I delkursen introduceras nationell såväl som internationell forskning om hur elever lär matematik och hur undervisningen kan organiseras, genomföras, diskuteras och följas upp. Särskild vikt läggs vid den studerandes egna matematiska förmågor, kunskaper och utvecklandet av ett matematiskt språk. Via matematisk problemlösning ges den studerande möjlighet att skapa matematiska problem samt anpassa, variera och kommunicera matematik på sätt som gör det möjligt för elever att utveckla sina matematiska kunskaper. Tillfälle ges även att ta del av och kritiskt granska elevlösningar av matematiska problem.

Examinationsformer

Examination sker genom aktivt deltagande i obligatoriska seminarier samt genom skriftliga och muntliga redovisningar, inlämningsuppgifter och salstentamina.

Arbetsformer

Arbetsformer är föreläsningar, obligatoriska seminarier, matematikövningar samt uppgifter som bearbetas enskilt eller i grupp.

Betyg

Som betygsskala används U - VG

För VG på hela kursen krävs VG på minst tre delkurser och minst G på den fjärde.

Betygsrapportering:

  • Matematikdidaktik I, 7,5 hp,
  • Algebra, 7,5 hp,
  • Geometri, 7,5 hp,
  • Matematisk problemlösning i skolan, 7,5 hp.

Förkunskapskrav Visa information om behörighetskrav

  • Områdesbehörighet 8/A8 eller motsvarande kunskaper. Dispens medges från kravet på Fysik A/Fysik 1a alternativt Fysik 1b1+1b2, Fysik B/Fysik 2 och Kemi A/Kemi 1

Övrigt

Om den nätbaserade kursen läses som första ämne inom ämneslärarprogrammet krävs närvaro i Falun vid terminsstart, max två dagar. För nätbaserad kurs krävs att den studerande har möjlighet att kommunicera med ljud och bild via en dator eller motsvarande.

Summary in English

The aim of the course is that the students both develop and enhance their mathematical competencies and mathematical knowledge as well as prepare themselves for future careers as teachers of mathematics in secondary school. The students are given the opportunity to develop their understanding of the logical and axiomatic nature of mathematics. The students will be expected to describe in general terms different scientific theories and research related to the development of mathematical knowledge. The students will also be given the opportunity to develop their ability to work independently and to reflect upon their own learning.

Litteratur

    Delkurser

    1.
    Matematikdidaktik I,  7,5 högskolepoäng

    2.
    Algebra,  7,5 högskolepoäng

  • Skott, J., Jess, K., Hansen, H. C., Lundin, S. (2010) Matematik för lärare Didaktik. 1 uppl. Gleerups. (501 s). ISBN 9789140671462
  • Vretblad, A., Ekstig, K. (2006) Algebra och geometri. 2 uppl. Malmö : Gleerup. (311 s). ISBN 978-91-40-64757-3
  • 3.
    Geometri,  7,5 högskolepoäng

  • Skott, J., Hansen, H. C., Jess, K., Schou, J.. (2010) Matematik för lärare Grundbok band 1. 1 uppl. Gleerups. (390 s). ISBN 978-91-40-66786-1 http://www.gleerups.se
  • Tengstrand, A. (2005) Åtta kapitel om geometri. Studentlitteratur. (320 s). ISBN 91-44-03879-8
  • 4.
    Matematisk problemlösning i skolan,  7,5 högskolepoäng

  • Hagland, K., Hedrén, R., Taflin, E. (2007) Rika matematiska problem : inspiration till variation. Stockholm : Liber. (236 s).
  • Taflin, E. (2007) Matematiska problem i skolan - för att skapa tillfällen till lärande. Umeå : Umeå Universitet, Institutionen för matematik och matematisk statistik. Akad. avhandling. (250 s). http://www.skolporten.com/art.aspx?typ=art&id=a0a200000003itneai
    Anmärkning: ISBN 978-91-7264-397-0, ISSN 1102-8300

Referenslitteratur

    Delkurser

    1.
    Matematikdidaktik I,  7,5 högskolepoäng

    2.
    Algebra,  7,5 högskolepoäng

    3.
    Geometri,  7,5 högskolepoäng

    4.
    Matematisk problemlösning i skolan,  7,5 högskolepoäng

  • Larsson, M. (2007) 32 Rika Problem i matematik. Stockholm: Liber. (71 s). ISBN 978-91-47-01911-3